Practice Problems 2

- 1) State the additive identity of the following vector spaces.
 - a) \mathbb{R}^4 (the set of real vectors in 4 dimensions).
 - b) $\mathcal{C}(-\infty,\infty)$ (the set of continuous functions on the real line).
 - c) M_{23} (the set of 2×3 matrices).
 - d) P_3 (the set of 3rd degree or less polynomials).
- 2) State whether the following sets with with the standard operations form a vectors space or not. If they are not a vector space then identify at least one of the axioms that fails.
 - a) M_{46} .
 - b) The set of all 3^{rd} degree polynomials, P_3^* .
 - c) The set of all 1st degree polynomials, ax + b, with $a \neq 0$, whose graphs pass through the origin.
 - d) The set $\{(x,y): x \ge 0, y \text{ is a real number}\}$.
 - e) The set $\{(x, y): x \ge 0, y \ge 0\}$.
 - f) The set $\{(x, \frac{1}{2}x) : x \text{ is a real number}\}.$
 - g) The set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$ with $a,b,c \in \mathbb{R}$. h) The set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ c & 1 \end{pmatrix}$ with $a,b,c \in \mathbb{R}$.

 - i) The set of all 2×2 singular matrices.
 - j) The set of all 2×2 diagonal matrices.
- Verify the 10 axioms in detail for M_{22} with the standard operations. 3)
- Show that the subsets, W, are subspaces of the specified vector spaces, V. 4)
 - a) $W = \{(x_1, x_2, x_3, 0) : x_1, x_2, x_3 \text{ are real numbers. } V = \mathbb{R}^4.$
 - b) W is the set of all 3×2 matrices of the form $\begin{pmatrix} a & b \\ a+b & 0 \\ 0 & c \end{pmatrix}$ where $a,b,c \in \mathbb{R}$. $V=M_{32}$.
- Show that the subsets, W, are not subspaces. 5)
 - a) W is the set of all vectors in \mathbb{R}^3 whose third component is -1.
 - b) W is the set of all vectors in \mathbb{R}^2 whose components are rational numbers.
 - c) W is the set of all matrices with zero determinants.
- Determine whether the subsets, W, are subspaces of \mathbb{R}^3 or not. 6)
 - a) $W = \{(a, b, a + 2b): a, b \text{ are real numbers}\}.$
 - b) $W = \{(x_1, x_2, x_1x_2): x_1, x_2 \text{ are real numbers}\}.$
- Construct a geometric figure that illustrates why a line in \mathbb{R}^2 that does not pass through the 7) origin is not closed under vector addition.

- Let W be the set of vectors of the form $\begin{pmatrix} 2b+3c\\-b\\2c \end{pmatrix}$. Find vectors, \mathbf{u} and \mathbf{v} , such that W=8) $Span\{\mathbf{u},\mathbf{v}\}\$ and hence that W is a subspace of \mathbb{R}^3 .
- 9) Either find a set of vectors that span W or show that it is not a subspace.
 - a) W is the set of vectors of the form $\begin{pmatrix} 1\\3a-5b\\3b+2a \end{pmatrix}$. b) W is the set of vectors of the form $\begin{pmatrix} 4a+3b\\0\\a+3b+c\\2b-2c \end{pmatrix}$.
- 10) Determine whether each vector can be written as a linear combination of the vectors in S.
 - a) $S = \{(2, -1, 3), (5, 0, 4)\}$

$$\mathbf{u} = (1,1,-1), \mathbf{v} = (8,-1/4,27/4), \mathbf{w} = (1,-8,12).$$

b) $S = \{(2,0,7), (2,4,5), (2,-12,13)\}$

$$\mathbf{u} = (-1,5,-6), \mathbf{v} = (-3,15,18), \mathbf{w} = (1/3,4/3,1/2).$$

- Determine whether the set, S_i spans \mathbb{R}^2 . If it does not, give a geometric description of the 11) subspace that it does span.
 - a) $S = \{(2,1), (-1,2)\}.$
 - b) $S = \{(-3,5)\}.$
 - c) $S = \{(1,3), (-2,-6), (4,12)\}.$
 - d) $S = \{(-1,4), (4,-1), (1,1)\}.$
- Determine whether the set, S_i , spans \mathbb{R}^3 . If it does not, give a geometric description of the 12) subspace that it does span.
 - a) $S = \{(4,7,3), (-1,2,6), (2,-3,5)\}.$
 - b) $S = \{(-2,5,0), (4,6,3)\}.$
 - c) $S = \{(1, -2, 0), (0, 0, 1), (-1, 2, 0)\}.$
- Determine whether the set, S, is linearly independent or linearly dependent. 13)
 - a) $S = \{(-2,2), (3,5)\}.$
 - b) $S = \{(0,0), (1,-2)\}.$
 - c) $S = \{(-4, -3, 4), (1, -2, 3), (6, 0, 0)\}.$
 - d) $S = \{(4, -3, 6, 2), (1, 8, 3, 1), (3, -2, -1, 0)\}.$
 - e) $S = \{(0,0,01), (0,0,1,1), (0,1,1,1), (1,1,1,1)\}.$
- 14) Show that the following sets are linearly dependent then express one of the vectors in the set as a linear combination of the others.
 - a) $S = \{(3,4), (-1,1), (2,0)\}.$
 - b) $S = \{(1,1,1), (1,1,0), (0,0,1)\}.$

- 15) Determine whether S is a basis for the indicated vector space.
 - a) $S = \{(3, -2), (4,5)\}$ for \mathbb{R}^2 .
 - b) $S = \{(1,5,3), (0,1,2), (0,0,6)\}$ for \mathbb{R}^3 .
 - c) $S = \{(0,3,-2), (4,0,3), (-8,15,-16)\}$ for \mathbb{R}^3 .
 - d) $S = \{(-1,2,0,0), (2,0,-1,0), (3,0,0,4), (0,0,5,0)\}$ for \mathbb{R}^4 .
 - e) $S = \left\{ \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \right\}$ for M_{22} .
- Determine whether S is a basis for \mathbb{R}^3 . If it is then write $\mathbf{u} = (8,3,8)$ as a linear combination 16) of the vectors in S.
 - a) $S = \{(4,3,2), (0,3,2), (0,0,2)\}.$
 - b) $S = \{(0,0,0), (1,3,4), (6,1,-2)\}.$
- Is $\mathbf{w} = (1, -1, 1)^{T}$ in Nul A? 17)

$$\mathbf{A} = \begin{pmatrix} 2 & 6 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{pmatrix}$$

- 18) Determine if **b** is in the column space of **A** or not?

 - a) $\mathbf{A} = \begin{pmatrix} -1 & 2 \\ 4 & 0 \end{pmatrix}$, $\mathbf{b} = (3,4)^{\mathrm{T}}$. b) $\mathbf{A} = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, $\mathbf{b} = (1,1,0)^{\mathrm{T}}$.