Practice Problems 7

- Verify that λ_i is an eigenvalue of **A** and that x_i is a corresponding eigenvector. 1)

a)
$$\mathbf{A} = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$$
, $\lambda_1 = -1$, $x_1 = (1,1)$, $\lambda_2 = 2$, $x_2 = (5,2)$
b) $\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$, $\lambda_1 = 2$, $x_1 = (1,0,0)$, $\lambda_2 = -1$, $x_2 = (1,-1,0)$, $\lambda_3 = 3$, $x_3 = (5,1,2)$

2) Determine whether \boldsymbol{x} is an eigenvector for \boldsymbol{A} or not.

$$A = \begin{pmatrix} -1 & -1 & 1 \\ -2 & 0 & -2 \\ 3 & -3 & 1 \end{pmatrix}$$

- a) x = (2, -4, 6)
- b) x = (2,0,6)
- c) x = (2,2,0)
- d) x = (-1,0,1)
- 3) Find the eigenvalues and corresponding eigenvectors.

 - a) $\mathbf{A} = \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix}$ b) $\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix}$ c) $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ -2 & 5 & -2 \\ -6 & 6 & -3 \end{pmatrix}$
- Find the eigenvalues and corresponding eigenvectors for the transformation matrix then 4) sketch/describe the effect on the unit square in \mathbb{R}^2 define by the unit vectors $u_1 = (1,0)$ and $u_2 = (0,1), (k \text{ is a constant}).$

 - a) $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}$ b) $\mathbf{A} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ c) $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$
- Verify that A is diagonalisable by computing $P^{-1}AP$. 5)

 - a) $\mathbf{A} = \begin{pmatrix} -11 & 36 \\ -3 & 10 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} -3 & -4 \\ -1 & -1 \end{pmatrix}$ b) $\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 3 & 0 \\ 4 & -2 & 5 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 0 & 1 & -3 \\ 0 & 4 & 0 \\ 1 & 2 & 2 \end{pmatrix}$

6)Show that the following matrices are not diagonalisable.

$$\mathbf{a}) \ \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix}$

7) Determine whether the following matrices are diagonalisable or not. If they are then find an invertible matrix, P, such that $P^{-1}AP$ is diagonal.

a)
$$\mathbf{A} = \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix}$$

b)
$$\mathbf{A} = \begin{pmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}$$

c)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

a)
$$\mathbf{A} = \begin{pmatrix} 6 & -3 \\ -2 & 1 \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}$
c) $\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & 2 \end{pmatrix}$
d) $\mathbf{A} = \begin{pmatrix} 0 & -3 & 5 \\ -4 & 4 & -10 \\ 0 & 0 & 4 \end{pmatrix}$

8) Find a basis, B, for the domain of the linear transformation, T, such that the matrix of Trelative to B is diagonal.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2: T(x,y) = (x+y,x+y)$$

b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3: T(x, y, z) = (-2x + 2y - 3z, 2x + y - 6z, -x - 2y)$$

9) If **A** is a diagonalisable matrix then there exists an invertible matrix, **P**, such that $\mathbf{B} = \mathbf{B}$ $P^{-1}AP$. Prove for a positive integer, k, that,

a)
$$B^k = P^{-1}A^kP$$

b)
$$A^k = PB^kP^{-1}$$

10) Use the result from question 9 to calculate the indicated power of \mathbf{A} .

$$\mathbf{a}) \ \mathbf{A} = \begin{pmatrix} 10 & 18 \\ -6 & -11 \end{pmatrix}, \ \mathbf{A}^{\epsilon}$$

a)
$$\mathbf{A} = \begin{pmatrix} 10 & 18 \\ -6 & -11 \end{pmatrix}$$
, \mathbf{A}^6
b) $\mathbf{A} = \begin{pmatrix} 3 & 2 & -3 \\ -3 & -4 & 9 \\ -1 & -2 & 5 \end{pmatrix}$, \mathbf{A}^8

11) Are the following matrices orthogonal or not?

a)
$$\mathbf{A} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} -4 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 4 \end{pmatrix}$

$$\mathbf{b}) \ \mathbf{A} = \begin{pmatrix} -4 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & 4 \end{pmatrix}$$

12) Find an orthogonal matrix that orthogonally diagonalises the following symmetric matrices and verify that P^TAP gives the proper diagonal form.

$$a) \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

a)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} 0 & 10 & 10 \\ 10 & 5 & 0 \\ 10 & 0 & -5 \end{pmatrix}$

13) Which of the following matrices are in Jordan normal form and which are not.

a)
$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$$

a)
$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 6 \end{pmatrix}$

c)
$$\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$$

$$\mathbf{d}) \ \mathbf{A} = \begin{pmatrix} 7 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -8 \end{pmatrix}$$

$$e) \mathbf{A} = \begin{pmatrix} 4 & 1 \\ 0 & 5 \end{pmatrix}$$

$$f) \mathbf{A} = \begin{pmatrix} 12 & 0 & 0 \\ 1 & 12 & 1 \\ 0 & 0 & 12 \end{pmatrix}$$

$$\mathbf{g}) \ \mathbf{A} = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -9 \end{pmatrix}$$

b)
$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 6 \end{pmatrix}$$

c) $\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$
d) $\mathbf{A} = \begin{pmatrix} 7 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & -8 \end{pmatrix}$
e) $\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 0 & 5 \end{pmatrix}$
f) $\mathbf{A} = \begin{pmatrix} 12 & 0 & 0 \\ 1 & 12 & 1 \\ 0 & 0 & 12 \end{pmatrix}$
g) $\mathbf{A} = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -9 \end{pmatrix}$
h) $\mathbf{A} = \begin{pmatrix} 5 & 10 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -9 \end{pmatrix}$
i) $\mathbf{A} = \begin{pmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 12 \end{pmatrix}$
j) $\mathbf{A} = \begin{pmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

i)
$$\mathbf{A} = \begin{pmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 12 \end{pmatrix}$$

$$\mathbf{j}) \ \mathbf{A} = \begin{pmatrix} 12 & 1 & 0 \\ 0 & 12 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

14) Find the Jordan normal form of the following matrices.

a)
$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

b) $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
c) $\mathbf{A} = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$

$$\mathbf{b}) \ \mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

c)
$$\mathbf{A} = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$