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What this guide contains...

The main ideas of linear algebra as a whole and by individual lecture.
Direct applications of linear algebra so you can see how it is used.
An “essentials only” approach to using the methods and understanding the

terms.

Click on the hyperlinks (underlined) embedded within the text to navigate.

Linear e
4. Glossary Algebra 2. Applications

3. Methods

1. Ideas Back to contents

This section goes through the main ideas behind linear algebra and those contained in the lectures.

e  General linear algebra

e Lecture 1
e Lecture 2
e Lecture 3
e Lecture 4
e Lecture 5
e Lecture 6

e Lecture 7



General Linear Algebra

e The main idea is to develop methods to manipulate and solve systems of linear equations.

e  You will see that many applications involve linear systems, including certain analysis of

nonlinear systems.

e Since real-world applications often have extremely large systems we generally utilise
computer code to solve them. This computer code must be made as efficient as possible,
particularly in the age of big data. The theories of linear algebra are what allow us to

make the code efficient for the specific application.

e There is a lot of manipulation of matrices because matrices are a convenient way of
storing data (think about making tables to store information by grouping things in
various columns and rows — a matrix is just like a table). We therefore develop techniques

to manipulate matrices in order to get the information we need out of the data.

e In the lower dimensions the vector algebra we do corresponds directly with geometry.

e Non-physics based problems in higher dimensions generally have no geometric equivalent.
We must therefore be able to understand and manipulate the higher dimensional
functions/systems without the need for picturing the geometry — in other words to rely on
the mathematics rather than pictures. However, pictures in the lower dimensions

sometimes help us understand what is going on in the higher dimensions through analogy.

e Finally, vectors are generally quite easy to manipulate compared with general functions
and operators you tend to find in statistics/calculus/differential equations. Imagine if we
could map more complicated problems into some kind of space to do with vectors... Say, a
vector space for example... Then we could manipulate/solve more easily whilst preserving

the system.



Lecture 1 Back

Linear systems

e Equations with only constants and x! terms.
e No functions like sin(x) or x? etc.

e (Can represent linear systems in matrix form: Ax = b.

a a b
e Form augmented matrix: ( e 1) <
az1 Ay | by
. o . TN VAWES! b,
e Pretend straight line is column vector x like: ( ) ( ) = —>
A1 Qz2/ \X3 b,

Echelon Form

e Every matrix has many echelon forms.
e The form is useful for extracting solutions from the matrix.
e Recognise using the following method:
- Start with top row at the left = Find first non-zero value = This is your first pivot =
Everything below the pivot should be 0.
- Move down to second row = Find first non-zero row = This is your next pivot =
Everything below should be 0.

- Repeat for all rows.
Reduced Echelon Form (REF)

e Same as echelon form but each pivot = 1 and everything below AND above should be 0.

e Every matrix has a unique REF.

Gaussian Elimination

e The process of obtaining an echelon form.

Gauss-Jordan Elimination

e The process of obtaining the REF.

Basic/Free Variables

e Basic variables correspond with the pivot positions.

e [Free variables can be any value.

1 0 1
0 0 1| x1,x3 basic, x, free
0 0 O

Pivot columns 1 & 3




Homogeneous Systems
Ax =0
Non-homogeneous Systems

Ax = b, b#0

e Solution, x, is sum of a particular solution and the solution to the homogeneous part.

Elementary Matrices

e Perform 1 row operation on the identity matrix to get an elementary matrix.

e Doing a row operation to a matrix is the same as left-multiplying it by the elementary

matrix: EA

e (Can write an invertible matrix as the product of elementary matrices.

Inverse of a Matrix

e (Can calculate using Gauss-Jordan elimination or using the adjugate formula.

LU-Factorisation

a;; O 0
L means lower triangular matrix: | dy; dyp 0
azp dzz dzs

ai1 Qq2 Qi3
e U means upper triangular matrix: | 0 azz az3
0 0 as;

Can factor a matrix into a product LU.

e (Can use it to solve linear systems more efficiently than Gauss-Jordan elimination.




Lecture 2

Vector Spaces

e A collection of objects that obey 10 rules.
e The objects may be vectors (hence the name) or the objects can be anything else that obeys
the 10 rules.
E.g. The set of continuous functions on an interval, C[a, b].
The set of polynomials of degree n or less, PB,.
The set of m X n general matrices, My,,.
e Any methods we apply to vector spaces can equally apply to general vector spaces such as

continuous functions etc.

Subspaces

e Subset of a vector space that is closed under addition and scalar multiplication. In other
words adding two objects together results in an object from the same space. Likewise with

scalar multiplication.
Linear Combination
e Adding multiples of vectors together: 3v; — 5vy + -+
Linear Independence

e  When vectors are not linear combinations of each other.
e (Can test using Gauss-Jordan elimination.
e If the number of vectors is greater than the dimension of the vector the set will definitely be

linearly dependent.

e If we have a set of vectors from a vector space, V, we call it a spanning set (or just span) if

every vector in V can be written as a linear combination of the spanning set vectors.

e The number of linearly independent vectors in a spanning set dictate the dimension of real

space it spans
E.g. {v1,v,,v3} spans R3 if the vectors are linearly independent.
{v1,v5} spans R? if the vectors are linearly independent.
e All spanning sets are subspaces.

e Every vector in V can be written as a unique linear combination of the spanning vectors.

Basis

e A linearly independent spanning set.




Standard Basis

e RZ {(1,0),(0,1)}
e R3:{(1,0,0),(0,1,0),(0,01)}

+ M (o o) o) G 0l D)

Etc.
Row Space
e Span of the row vectors in a matrix.
Column Space
e Span of the column vectors in a matrix.
Null Space

e Span of the homogeneous equation solutions, Ax = 0.



Lecture 3

Dimension of a Vector Space

e The number of basis vectors.

Finding a Basis

e Start with a spanning set then make linearly independent by removing vectors.

Basis for Null Space

e Span of solution to homogeneous equation.

Basis for Row Space

e Non-zero rows of echelon form.

Basis for Column Space

e Non-zero rows of echelon form of transpose.
Or,

e Find linearly independent columns from echelon form = Use corresponding original columns

as basis.
Rank
e Dimension of the row space (same as dimension of the column space).
Nullity
e Dimension of the null space.
Rank-Nullity Relationship

e Rank + nullity = number of columns in matrix

Meaning of Column Space
e The column space gives you every vector, b, that will have a solution to Ax = b.
Coordinates

e Write a vector as a linear combination of basis vectors = The coefficients (constants) are

called the coordinates relative to that basis.



Change of Basis

e In lower dimensions it is like changing coordinate systems:

“,x=3(l.0)+2(1.2) v x=5(1.0)+4(0, 1)
- (2 | 0=
[xlp=1> N ,[_"_]_.S_=:[4,].
;63,2 ' : (5.4)
vl . H s v 2 " ’. —_-.-) M
/ 4“2 e
u>
X - X
ot LI Su
' N‘ohs‘l‘;indard basis: " Standard basis:
B ={(1,0).(1,2)} S ={(1,0),(0, 1)}

e (Can change basis by solving a linear system or by using a transition matrix.

e Coordinates in the standard basis can be written as [v]g or simply v.

e Coordinates in a non-standard basis, B, can be written as [v]g.

Transition Matrices

e From a basis, B, to the standard basis it is just made up from the basis vectors in B. Use

them as columns.

e (Can convert between 2 non-standard bases using Gauss-Jordan elimination.



Lecture 4 Back

Vectors in Higher Dimensions
e All the usual formulas still hold but just extend the ideas to include all elements.
Cauchy-Schwarz Inequality

e Used to prove we can still define the angle between higher dimension vectors

e Helps prove the triangle inequality.
Triangle Inequality

e Generalised Pythagoras’ theorem.

e Used in many areas of mathematics.

Inner Product

e An operation that takes 2 inputs and obeys 4 rules.
e Generalises the dot product and are used to derive Fourier series in calculus, and speeding up
computations using Krylov subspaces (not covered in this course).

e The regular dot product is known as the Euclidean inner product. Use this one for vector

spaces R™ if the inner product is not specified.

Orthogonality

e Vectors are orthogonal if their inner product is 0.

Orthogonal Projection onto Vectors

e In lower dimensions it is like the “shadow” of a vector on another vector.
e Represents the closest distance between 2 vectors.

e This fact is used to do least squares.



Lecture 5

Orthogonal Sets
e All vector combinations in both sets are orthogonal to each other.
Orthonormal Vectors

e Orthogonal vectors which are also unit vectors.

e Orthogonal/orthonormal vectors are also linearly independent.

Orthonormal Basis

e Basis consisting of orthonormal vectors.

e Gives a very convenient way to write coordinates of any vector (use inner product).
e The i,j, k vectors on the x,y,z axes in the Cartesian coordinate system are an orthonormal
basis.

e The coordinates are then just the projections of the vector onto the basis vectors.

e Since the norms are 1 these projections are just the inner products (projection is inner

product divided by norm).
Orthogonal Matrix

e A matrix with row vectors that are orthonormal.

e The columns will also be orthonormal.

Gram-Schmidt Orthonormalisation

e Method of constructing an orthonormal basis from a general basis.

e Start with the first basis vector then build from there by subtracting consecutive projections.

Orthogonal Subspaces

e Every combination of vectors from 2 subspaces is orthogonal.

Orthogonal Complement

e Set of all vectors which are orthogonal to every vector in a vector space.

Projection onto Subspace

e Generalisation of vector projection.

o Used for least squares.

Least Squares

e Used to get best approximate solution to an inconsistent system.
e Inconsistent systems occur all the time when you take measurements of anything due to
errors.

e Minimises the total error.



Lecture 6

Linear Transformation

e A function from one vector space to another that can be split with regard to addition and
have a scalar multiple factored out.
e Note that not all straight lines are linear transformations even though we call them linear

graphs — only the straight lines through the origin are linear transformations.

Image of a Vector

e Just apply the transformation to the vector.

Pre-image of a vector

e Find all vectors which get transformed into the vector.
Domain

e Set of inputs.
Range

e Set of outputs for each input.
Codomain

e The vector space which contains the outputs.

e [t is all possible outputs and is either greater than or equal to the range.

Transforming Basis Vectors

e If we know how a transformation affects the basis vectors, we can find the transformation of

any vector in the span of that basis.
Matrices for Linear Transformations

e All matrices can be considered as a linear transformation.
e We like these because matrices are convenient for data storage and easy to manipulate.

e The column space gives the range in this case.
Kernel

e All vector which get mapped to the 0 vector.

o If the kernel is only the zero vector then the transformation is one-to-one.
Rank/Nullity

e Rank is the dimension of the range.
e  When the rank equals the dimension of the codomain the transformation is onto (range =
codomain).

e Nullity is the dimension of the kernel.



e Nullity is 0 for one-to-one transformations (dimension of the set with only the zero vector is
0).

e Rank + nullity = dimension of codomain (similar to simple matrix systems)

Isomorphisms (see application)

e Vector spaces which are basically the same but just written differently.
e If the dimensions of the vector spaces are equal then they are isomorphic.
E.g.
- Py = ag + a;x + ayx? + azx® has standard basis {1, x, x?, x3}.
- Even though the vector space represents a system of nonlinear equations, the
coefficients with respect to the basis are just vectors in R*:
(ag,aq,a5,a3) = (1,0,—1,2)
- The vector (1,0,—1,2) fully describes the cubic polynomial, 1 — x? + 2x3.

- Now imagine you have 4 data points and you want to fit a cubic curve to it:

Y1 Unknown cubic function
Y3 \
Ya
\y/
Y2 x
X1 .'X.lz X3 X4

P; = ay + a;x + ayx? + azx3

We know the values of each (x;,y;) leading to,

Y1 = Qo+ a;x; + axx? + azx3
Y, = Qg + a1x; + ax? + asx;
y3 = ay + a;x3 + ayx3 + azx3
Yo = Qg + a1, + ayx2 + azx;

So we just solve,

1 x; xf %3\ /a, Vi
L w o o[ (%
1 x5 x2 x3\a@) \»
1 x, x2 x3 / a3 Y4

To get the a; (see applications section).

We can utilise linear algebra here because P; is isomorphic to R*.



Standard Matrix

e For a transformation relative to the standard basis it is just the variable coefficients.

e If the transformation is relative to a general basis then we transform the basis vectors and

use them as columns to get the standard matrix.

Composite Transformations

e Make sure dimensions match.
e Can represent as multiplying matrices together from right to left (the first transformation has

matrix closest to the vector).

Inverse Transformations

e Just find inverse matrix then use them as coefficients of the variables.

Matrix of T Relative to B and B’

e Imagine we have a transformation from the standard basis to the standard basis:
T(v)=w
e In many real-world problems we are given measurements with respect to a different
coordinate system than our own. Sometimes we are also required to give the result in yet
another coordinate system.
How can we represent the original transformation but between the 2 different coordinate

systems?

We need a matrix, A*[v]z = [W]g,
This is the matrix of T relative to B and B’.

e We have 2 techniques — one for square matrices and one for non-square.

Similar Matrices

e We might know a transformation for a basis, B.

e  We then might have some data in a different basis, B'.

e We want to apply the transformation to our data but the problem is it is with respect to B.

e Normally we would have to change from B’ to B = Transform = Convert back to B'.

e We can find a similar matrix, A’, relative to B’ instead to avoid converting coordinates all the

time.



Lecture 7 Back

Eigenvalues/Eigenvectors

Vectors, x, and numbers, A, that satisfy Ax = Ax.

Represents a stretch or contraction but the direction of the vector is unchanged by A.
All other vectors that are not eigenvectors will have their direction changed.

Each eigenvector has a corresponding eigenvalue.

We find them by solving the characteristic equation, |A — Ax| = 0.

Repeated roots of the equation correspond with the multiplicity of an eigenvalue.

Eigenspace

Union of all eigenvectors for a particular eigenvalue with the zero vector.

Diagonalisation

We can make a matrix diagonal by finding a special matrix.

Not all matrices are diagonalisable.

Diagonal matrices are easy to work with which is why we want them (check out the
application for finding powers of a matrix).

An n X n matrix is diagonalisable if it has n linearly independent eigenvectors.

If we have a linear transformation represented by a matrix, we can find a basis so that the
matrix is diagonal which simplifies future calculations.

If we can diagonalise a system of linear differential equations then the solutions become easy
to handle.

Orthogonal Diagonalisation

The same as diagonalisation but in an orthonormal basis.

This can be done on symmetric matrices only.
We get the same benefits of diagonalisation with the added bonus that all coordinates are

also easy since the basis is orthonormal.

Jordan Normal Form

A block matrix which has non-zero leading diagonal blocks and 1’s on the diagonal just above

the leading diagonal of a block.

If a block is 1 X 1 then there are no 1’s in that block.

All matrices have a unique Jordan normal form.

The matrix used to obtain it is not necessarily unique.

The uniqueness of the Jordan normal form is used in further linear algebra topics which lead

to methods of solving other problems.

Generalised Eigenvectors

Eigenvectors of the characteristic equation raised to powers.

Used to find the Jordan normal form.



2. Apph(‘&tiOHS Back to contents

This section contains a small selection of applications which utilise topics from across the lectures.
Many more exist, particularly with regard to probability and statistics, however as I am not a

statistician I will save those for your statistics lecturers.

The necessary background for some of these applications is left out since the purpose is just to let
you see how these things are applied. If you are interested in where the equations come from and the

details of what they mean then you can self-study whatever you are interested in.

I also have resources for each of the topics which can be made available on request.

e Solving large systems of linear equations.

e Fitting polynomial curves to data points.

e Finding lines of best fit for inconsistent data.

e Solving systems of linear ordinary differential equations.

e Using eigenvalues to understand complicated nonlinear systems of ordinary differential equations.

e  Writing efficient computer code to solve large systems.

e Probability.




Solving Large Systems of Linear Equations

o In 1949 Professor Wassily Leontief was working an economic model for the US economy.

e He used 250,000 pieces of information from the Bureau of Labour and Statistics to formulate
a model of 500 economic sectors, including coal, automotive, communications etc.

e Large amounts of data like this are usually modelled as linear systems since the computation
task is very difficult.

e Leontief’s model had 500 equations that linked each sectors output to other sectors of the
economy resulting in a system of 500 linear equations in 500 unknowns.

e Repeatedly solving such systems when changing parameters (such as production rates etc.)
consumes a lot of time and so we seek efficient algorithms.

e LU-factorisation is more efficient than Gaussian/Gauss-Jordan elimination and the marginal

gains at the small scale are amplified at the large scale.

Simplified model:

- Read down columns to see

where output goes.
- Read across rows to see

required inputs

TABLE 1 A Simple Economy
Distribution of Qutput from:

Coal Electric Steel Purchased by:
0 4 .6 Coal
.6 5| 2 Electric
4 %] 2 Steel

e Equilibrium prices are when each sectors incomes equal their expenditures.

e The linear system to find these prices is:

pc — 4pg — 6ps =0
—6pc + 9pg — 2ps =0 N
—A4pc — Spg + 8ps =0

e We write in matrix form, row reduce and get the equilibrium price vector:

1 —4 —6 0 | 0 —.94 0 Pc .94}]5 .94
—.6 9 =2 0 ~ 0 1 —.85 0 P= PE | = .85p5 = Ps .85
-4 -5 8 0 0 0 0 0 Ps Ps 1



Fitting Polynomials

e An earlier section discussed how to do this for a cubic. We can map the nonlinear cubic

roblem, ay, + a;x + a,x? + azx3, to the isomorphic vector space (ay, ay,a,,as) € R*:
p 0 1 2 3 0 3

/ 1 x; x% xf\ a V1
1 x x% x% ar |\ [ Y2
1 x5 x2 x3[\a) \»s
1 x, x} x3) \93 Y4

For known points (x1,y1), (X2,¥2), (x3,¥3), and (X4, Y4).

E.g. Find the cubic polynomial that passes through (1,3), (2,-1), (3,-5) and (4,0).

i x|yl /11 1 13 100 0] 4
1 1 3 1 2 4 8 [-2 0 1 0 O 3 _ _
5 | 2 | = 13 9 27|-5 00 1 0|57 @ooanas)=*3-51)
1 4 1 4 1 1
3 3 5 6 6 0 0 0 O
4 4 0
So the cubic that fits the points is p(x) = 4 + 3x — 5x2 + x3.
5- T T T T T
4 F
3_
2_
i
= 0
-1
2|
=3 F
_4_
5T
-4 -2 0 2 4 6 8



Finding Lines of Best Fit

e In lecture 5 we derived the least squares formula for finding lines of best fit (regression lines):
ATAx=A"b

e This equation came from trying to minimise the norm of the error between the calculated line

and the data points.

e The norm of the error represents the total error of our line approximation across all points.

Error from second point, e,.

Error from first point, e;. i

T~

We are trying to minimise the total error which is given by,
e + e} + -

We square each error so the positive and negative errors don’t cancel out. Then add them up and
square root them to get a representation of the total error. This is the definition of norm for an

“error vector” = (eq, ey, ...).
If we minimise this then we have found the best possible fit.

We construct the error vector to be an orthogonal projection which we know minimises the distance
resulting in ATAx = A"h .

We solve the resulting matrix equation using standard linear algebra techniques.

It is also possible to formulate linear approximations to do nonlinear least squares fits that can still

be solved using Gaussian elimination etc. such as the graph below.

12 T T T

O Data
; 5 Bestfit| |

0.8

06

04}

021




Solving Systems of Linear ODEs

e We already know how to solve a linear 1** order differential equation, but what happens when
we have large systems of them? This occurs frequently across all industries.
e In a similar way to how we mapped the vector space of polynomials to a simple vector space

in R™ (isomorphisms), we can do the same for systems of linear differential equations.

E.g
% =4x, + 7x,
% = —2x; — 5x,
dt
This can be written as,
dxy
i |= (5 () > a=ax
dt

It can be shown that to solve this system we require,
A-ADv=0
Which is the eigenvalue problem.

Once we get the eigenvalues and eigenvectors the solutions will be of the form,

x(t) = velt

In our example the eigenvalues/eigenvectors are:
_ _(—1 _ (2
A =-1, vy = ( 1 ), A, = —4, vy = (3)

We can see from the eigenvectors that the solutions are linearly independent. Therefore we can

make a new solution by adding them together as a linear combination:

1= () =a()et+a(g)e

Choosing different values of each c; give different curves in the (x4, x,)-plane. Selecting the curves
when ¢; = 0, then when ¢, = 0, we get 2 straight lines. We can tell which direction they move in

because of their eigenvalues (positive or negative exponent):

x2

X1




Eigenvalues for ODEs

Nonlinear systems of ODEs are frequent occurrences in real-life applications:
dxy
dt
dx;
dt
dX3 _
dt

We can even analyse these using linear algebra by considering the equilibrium points (when

rates of change are 0) and making linear approximations around them:

X2

X2

— N

X1 X

We take the Jacobian around an equilibrium point as a linearisation of the system and solve
the eigenvalue equation again to get the trajectories of the solution (away or towards the

point).

We can also diagonalise the matrix in some cases which represents a decoupling of the system

variables (Can re-write system as 2 independent equations with new variables).

This diagonalisation is the equivalent of changing coordinates to a basis consisting of the

eigenvectors.



Writing Efficient Code

e  When solving PDEs we can formulate the problem such that we must solve a system

corresponding with a large sparse matrix.

e A sparse matrix is a matrix with most entries equal to 0:

/100 50 0 0 0 0 0
0 30 0 0 0 0 110 0
0 0 0 0 90 0 0 0
0 0 60 0 0 0 0 0
0 0 0 70 0 0 0 0
20 0 0 0 0 100 0 0
0 0 0 8 0 0 0 0
\0 40 0 0 0 0 0 120/

e Since there are many zeros it is a waste of time to simply go through every single step in
Gaussian elimination to get a solution (normally sparse matrices have thousands of elements

or more) so we can use specialised techniques for solving them.

e Many of these involve utilising Krylov subspaces, Kj (4, b), for our sparse matrix equation.

e  We essentially have to solve the least squares problem,

min ||b — Az||
z€K(A,b)

e The Krylov subspace deals with the zeros so that the algorithm is more efficient.

e Since the minimisation problem depends on the norm, and the norm is defined by the inner

product, the algorithm is affected by choice of inner product.

e There is active research which utilises non-standard inner products in order to make this

algorithm more efficient.

See: Nonstandard inner products



https://encrypted.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwixqZukicHZAhXCOI8KHWWaDuYQFggkMAA&url=https%3A%2F%2Fora.ox.ac.uk%2Fobjects%2Fuuid%3A2e5b636b-1145-461e-80fa-ea2041ec476f%2Fdatastreams%2FTHESIS03&usg=AOvVaw2QrWLyFGCjbUX51nA32SKw

Probability

e There are many applications in probability and statistics for linear algebra however these are

not my expertise so I will only give a small glimpse into what can be done.
E.g.

Given a sequence of events whose probabilities depend on the previous event, the probability of a
particular sequence appearing in a generation, t + 1, can be written as the sum of conditional

probabilities,
pi(t+ 1) = P(i|Dp1(0) + P(i2)p2(¢) + -+ + P(|N)py (2)
In matrix form we have,
p(t+1) = Ap(t)
To calculate the probability of an event at a given time, T, we have,
p(T) = Ap(T — 1) = AAp(T — 2) = AAAp(T —3) = --- = AA ... Ap(T")
where T’ is some initial time.

So we need to calculate a high power of a matrix which (as shown in practice problems 7) can be

done easily via diagonalisation.



3 1\~’Iethods Back to contents

This section goes through many (not all) of the methods covered in the lectures with no derivations.
Just formulas and quick tips. The lecture notes provide the necessary background as to where the

formulas came from and why they work.

® (Gaussian/Gauss-Jordan elimination

o Understanding solutions from matrix forms

o Inverse of elementary matrix

® Product of elementary matrices

o Inverse of a matrix by Gauss-Jordan

o Inverse using adjugate

e [ U-factorisation

e Solving systems with LU-factorisation

® Testing for subspaces

® Checking for linear independence

e Finding a basis for a vector space

e Finding the dimension of a vector space

e Finding the null space of a matrix

e Finding the row space of a matrix

o Finding the column space of a matrix

e Finding the rank and nullity of a matrix

e Changing basis
e Finding transition matrices

o Testing something is an inner product

e Norm, distance, angle and orthogonality with inner products

e Orthogonal projection onto vector

e Testing for an orthogonal/orthonormal basis

e (Coordinates with orthonormal bases

e Creating orthonormal bases (Gram-Schmidt)

e Testing for orthogonal subspaces

e Finding orthogonal complement

e Projecting onto a subspace

e Least squares
e Image/pre-image of a linear transformation

e Showing whether a function is a linear transformation or not

e Using transformed basis vectors

e Kernel of a linear transformation

e Range of a linear transformation

e Testing for isomorphic vector spaces

e Standard matrix for a linear transformation

e Composition of linear transformations

e Inverse transformations




Matrix of T relative to B and B’ for square matrix transformations

Matrix of T relative to B and B’ for general transformations

Finding a similar matrix

Testing if something is an eigenvector

Finding eigenvalues for a matrix

Finding eigenvectors for a matrix

Dimension of eigenspace

Testing if a matrix is diagonalisable

Finding a matrix which diagonalises a given matrix

Finding a basis such that a transformation has diagonal matrix

Orthogonally diagonalise a matrix

Calculate Jordan normal form of a matrix

Easily compute high powers of a matrix




e Gaussian/Gauss-Jordan elimination Back to methods

- Can do in your own way if it suits you.

- A fail-safe method is:

Start top left (pivot 1) »/1 2 3
4 5 6
7 8 9
1 2 3
Make 0 below 0 -3 -6
7 8 9
Make 0 below 1 2 3
0 -3 -6 )
0 -6 —-12
Choose next pivot
1 2 3
0™-3 -6
0 0

Make 0 below

Make all pivots equal to 1

N\
1,0 -1
. 0 1 2
Make 0 above all pivots 00 O




e Understanding solutions from matrix forms Back to methods

- Pretend straight line is variable vector:

Homogeneous:

- No need to write augmented matrix since it will all be 0’s in the right-most column.
1 0 1 1 0 1\ /% 0
2 3210 2 3]|*x2]=|0
0 0 1 0 0 1/\x3 0
- From this we can tell that,
1 0 1
0 2 3
0 0 1

1X1+OXZ + 1X3 =0
0x1+2x2 +3x3 =0
OX1+OXZ + 1X3 =0

(e)

- The bottom one means x3 must be 0.

- Substituting back we know all must be 0 (trivial solution).

- If no free variables then x = 0 is unique solution (known as trivial solution).
- If there is a free variable then there are infinite solutions.

- A row of 0’s means a free variable and therefore infinite solutions.

1 0 1
(0 2 3)
0 0 O

1x1+0x2 + 1X3 = 0
0x1+2x2 +3X3 = 0
0x1+0x2 +OX3 = 0

- x3 can be anything and we choose x; and x, as functions of x3.

Another example: Pivot
1 0 -1 4 Pivot
Pivot 1 -2 5
0 0 0 1
0O 0 0 O

This column, x3, is free (not pivot)




Non-Homogeneous:

Summary

Unique solution has reduced echelon form equal to the identity matrix:
00
0 0
0 0

The determinant will also be non-zero.

Inconsistent means no solution:

1 0 02
0 1 013
0 0 01
The determinant will be zero.
Infinite solutions:
1 0 0,2
0 1 0(3
0 0 0|0

The determinant will be zero.

Homogeneous can have only unique or infinite solutions.

Non-homogeneous can have unique, infinite, or no solution.

Homogeneous always has at least unique solution. This solution is always the zero vector.

A row of 0’s means infinite solutions.

Be careful for non-homogeneous since both sides of vertical line must be 0 for infinite solutions.

Choose pivots as basic variables. Non-pivot positions are free variables.



Inverse of elementary matrix Back to methods

- Just ask “what matrix do I need to turn it back into the identity matrix?”

1 00
E={0 1 0
2 01

- This matrix adds 2 times row 1 to row 3.
- How do we get E back to the identity matrix?

- In this case we subtract 2 times row 1 from row 3:

1 0 0
El=(0 1 0
-2 0 1

E

1 0 O
0 -3 0
0 0 1

- This matrix multiplies row 2 by —3.
- How do we get E back to the identity matrix?

- In this case we divide row 2 by —3:

1 0 0
1

El=|0 -Z 0
3

0 0 1



e Product of elementary matrices

Back to methods

Put in reduced echelon form one step at a time.

Write down elementary matrices for each step.
- Find inverses.

Multiply together (first matrix on the left).

N((l) —22) Elz(—13 (1))
(Y B,

G D EB=l )




e Inverse of a matrix by Gauss-Jordan Back to methods

- Augment with identity matrix.

- Make left matrix into identity matrix.

- The one on the right hand side will be the inverse. Identity
1 2|1 0 / matrix
Original > (3 410 1)
matrix N (1 2 1 0)
0 -2(-3 1
1 2|1 0
~ (0 1 3 1)
2 2
Inverse
1 0]-2 1 _—
~ <0 . 3 1) /
2 2

VL /
Identity

matrix




e [nverse using adjugate

1 2 1
A=(0 1 3
2 01

4] = 11

= (grs)
| ||é X | l—lé 1| || I|\
1 0o
I\| B

2 1
A=<£13>
1 3 _|21 |21
0 1 0 1 1 3

1
e N R

A-

A=<0 'E 3)
2 1
|1 3 _|2 1 |2 1
. 00 13 0 1 1 3
A_lzﬁ _|2 1 | | _l |

Back to methods




1 1
A=
)
|1 2 1 |2 1
/O O 1 1 3 \

A kgflzl-l I)
-l

A=($ %)
afl b | )
RN

|1 21|21|
/O 01 13\

03 1 1
L21|2|_|03|)
0 1
zo_l || |
1 2
()
2 0
|13_|21|21
0 1 o 1l 11 3
_ 1 _|03 |1 1| _|1 1|
11 2 1l 12 1 0 3

Ly o-Ey )



—

— ™ N —
— o
N~ — = o
|
¥ — N O
- ~ — —
No | T
N |
— o
o —
o«
< — o — o«
|
/ll.\
—
-



LU-factorisation. Back to methods

- Reduce to upper triangular matrix, U.

- Write down elementary matrices.
- Find inverses.

- L=E;'E;" . is product of inverses.

1 -3 0
A=|0 1 3
2 —-10 2

1 -3 0 1 0 0
~<0 1 3>, E1=<0 1 0
0 —4 2 -2 0 1
1 =3 0 1 0 0
~lo~a2 3|, E,=|0 1 0
0 O\ 4 0 4 1
U
10 0 1 0 0
511=<0 10), 521=<0 1 0
2 0 1 0 —4 1
1IN0 0
L=E11E21<o10
2 —4 1




e Solving systems with LU-factorisation

0
1
—4

-3
1
0

0
0
1

— <

=5
-1
—20

X

0
3
14

!

-5
-1
~14

Back to methods

x1 - 3x2 = _5
xZ + 3.X3 = _1
le - 10x2 + Z.X3 = _20

1 -3 0 -5
A= <0 1 3), b = ( -1 )
2 =10 2 —20

9)/1:_5,}/2:_1,)/3:_14 Ly:b

)9)(3:_1,.752:2,.751:1 Ux=y



e Testing for subspaces

- Quick check = If zero vector is not in the set then NOT a subspace.

Does NOT contain (0,0,0).

{(,y,1): x,y R}

All vectors look like (0,0,1), (1,2,1),(—1,0,1), etc ...

Back to methods

- Check 2 things

«—— Closed under addition:

3 » Lhen S is a subspace.

S={(xy,0): x,y e R}
(xli Y1 0) + (Xz, Y2, 0)
= (X1 +x2, 51 +¥1,0)

= (Wll W2I 0) € S

Of the same form

<4— C(losed under scalar multiplication:

S={(xy0): x,y €R}
c(x,y,0), c€eER
= (cx,cy,0)

= (Wl' Wo, 0) ES

Of the same form




Checking for linear independence Back to methods

- Solve homogeneous equation.

- If only unique solution then linearly independent.

=G0
RN

/ Unique solution

So § is linearly independent.

Remember that the unique solution to the homogeneous equation is ALWAYS the zero vector (trivial

solution).

- If infinite solutions then linearly dependent.

/-~
NN
O Ul N
O O W
~—__—
l
~~
O O =
O = O

[
ON)—\
N~

Infinite solutions

So S is linearly dependent.




e Finding a basis for a vector space Back to methods

- Find a spanning set.
- Make linearly independent.

- Note that a set of n linearly independent vectors spans R™.

=RGH)

1 0 -2 1 00
(2 1 0 >~ (O 1 O) - 3 linearly independent vectors = Spans R3 = It’s a basis for R3

=RG)

1 0 -1 1 0 -1
2 1 0 |~[0 1 2 )= 2linecarly independent vectors = Spans R?
3 2 1 0 0 O

- Pick 2 linearly independent vectors

1\ /0
2> 5= {(2), (1)} spans R? and is linearly independent = It’s a basis for R?
3 2



e Finding the dimension of a vector space

- Find a basis.

- Count the number of vectors.

=RG)

1\ /0
S*= {(2) , <1>} is a basis (still spans the same vector space as S).

3 2

There are 2 vectors so dim(S) = 2.

Back to methods

The standard basis for R3 is {(1,0,0), (0,1,0), (0,0,1)}.

There are 3 vectors so dim(R3) = 3.



e Finding the null space of a matrix

- Solve homogeneous equation.

- Find a basis for the solution.

- Null space is the span of the basis.

System:

Homogeneous version:

1
Basis for solution is {(—2)}
1
Null space is Span {(—2)}
1

—_

x1+2xZ+3X3:1
4x1 + 5x2 + 6x3 =—-1
7x1 +8x2 +9x3 =2

X1+2xZ+3x3=0
4x1 + 5%, + 6x3 =0
7x1 +8x, +9x3 =0

Back to methods

Solution

X =3 (—12> «—

1




e Finding the row space of a matrix Back to methods

- Put into reduced echelon form.

- Non-zero rows are basis for row space.

1 2 3 10 -1 Non-zero rows
A=(4 5 6|]~|0 1 2 |e—— :

Row space is Span{(1,0,—1),(0,1,2)}



e Finding the column space of a matrix

- Put in reduced echelon form.

- Get linearly independent column numbers.

1 3 1 3 3 1 3
0 1 1 0 0 1 0
A=|-3 0 6 —-1]|~]0 0 O
3 4 -2 1 0 0 0O
2 0 -4 -2 0 0 0O
Linearly
independent
columns
- Use those column numbers of the original matrix to make a basis.
Choose same columns of original matrix:
1 3 1 3
0 1 1 0
A=]-3 0 6 -1

S -

SN~

!’/

s

Column space is Span

,/ 0\’/ _1\ |
31

Back to methods




¢ Finding the rank and nullity of a matrix Back to methods

- Find a basis for the row or column space = dimension is rank.

- Find a basis for the null space = dimension is nullit:
1 2 3 1 0 -1 1
A=(4 5 6>~<0 1 2 ) 9x=x3(—2>
7 8 9 0 0 O 1
1
Basis for solution is §[ —2 — nullity = dim(nul(A)) =
1
2 linearly independent rows/columns — ¢—— rank = dim(T‘OW(A)) = dim(col(A)) :

Number of columns in matrix is —

rank + nullity ==




e Changing basis Back to methods

- Get vector in terms of standard basis.
- Write as matrix equation
o Matrix columns formed from basis vectors. Choice of notation
o Augment with standard basis coordinates. for standard basis.

- Coordinates in basis, B, are written as [x]p

- Coordinates in basis, B', are written as |x|,

- Coordinates in the standard basis, S, are written as [x|¢ or just x.

B = {(1: _1)1 (2,1)}, B' = {(1;3)1 (_2,5)}, S= {(1,0), (0,1)}

\ \ \

Starting basis Desired basis Standard basis

Write [(_21)]B relative to B'.

We need to go B > S > B’

Standard basis

/ coordinates

B>5: x=2x(_11)—1x(i)=(_03)
537 O I G T Y )



¢ Finding transition matrices Back to methods

B = {(11 _1)1 (2'1)}1 B' = {(1'3)' (_215)}

Use basis vectors

as columns

l Row reduce
|

Transition

matrix

[x]5: = Rlx]p
—

(o 7120 )

C(3/11 12/11
R‘(—4/11 —5/11)



e Testing something is an inner product Back to methods

<wuv>=<vu>

Can split up:
<uvt+tw>=<uv>+<uw>
- Can factor scalar:

c<u,v>=<cu,v>=<UuU,cv >

<uu>=0

Only equals 0 if u is zero vector.

<uu>=0=>u=0

Test < u,v>= U1 + 2u2172.

1) <wu,v>=uv; +2uv, = vuy + 20U, =< v,u >
2) <uv+w>=u (v +wy))+2u(vy, +wy)

= U Vg + 2Uyv, + ugwy + 2uy,w,

=<u,v>+<uw>
3) ¢ <uv>=cluyv + 2uyv,) = (cuyvy + 2cuyvy)
((cup)vs + 2(cuz)vy)

=<cu,v>

4) <uu>=ugu +2uu, =uf+2us >0
5 <uu>=0=> ul+2ui=0=>u =u, =0

So it is an inner product by definition.



e Norm, distance, angle and orthogonality with inner products Back to methods

- Apply definition of inner product as in previous example to the following formulas:

Norm ||u|| =J<uu>

e [l =]

2
<u,v> Note that < u,u >= ||ul|

Anole COS O = ————
o e[

rthogonal <u,v =0



e Orthogonal projection onto vector Back to methods

- Using dot product.

Projection of u onto v.

_ u-v
roj,u =—v
ot =% v
Project u = (4,2) onto v = (3,4)

4B, (12 16
it = Gy an 9 = (575)

- Using general inner product.

. . —>
Projection of u onto v.

. <u,v> <u,v>
proj,u = v= 5—V
— <VVv> ||v||

Project u = (4,2) onto v = (3,4) using < u, v > = u,;v; + 2u,0,

_ < (4,2),(34) > 4%x3+422x4) 84 112
proj,u = = (34) = ( )

4) = bl
<GHGH> Y T 3312010 a1 a1



e Testing for an orthogonal/orthonormal basis

- Inner product of each vector combination should be 0.

S ={(1,0,0),(0,1,0),(0,0,01)}

(using dot product in this example but could be general inner product)

(1,0,0) - (0,1,0) = 0
(1,0,0)- (0,0,1) =0
(0,1,0) - (0,0,1) =0

So § is orthogonal.

- Check if unit vectors also.

1100 =VIZ+ 02+ 02 =1
11(0,1,0) = /02 + 12 + 02 = 1
100,0,)]| = /02 +02 + 12 =1

So S is orthonormal.

Back to methods




e (Coordinates with orthonormal bases Back to methods

- Take inner product of vector with basis vectors.

Orthonormal
Y R I

v
Find w = (5,—5,2) relative to B. "1 V2 3

Vector in

standard basis

L =<w,vq >
Cyp =< W,Vp >

c3 =< w,v3 >

(Using dot product but could be general inner product)

34
1 = (5,—5,2) : <§,§,0) =|—1
4 3
¢, = (5,-52) (—5,5,0) —|-7
c3 = (5,-5,2)-(0,0,1) =| 2




e Creating orthonormal bases (Gram-Schmidt) Back to methods

- Start with a basis and choose first vector:

B =1{(1,1,0),(1,2,0),(0,1,2)}

\

w1

- Make next orthonormal vector using wq and projecting the second basis vector:

wy = (1,2,0) = proj,, (1,2,0)

- Make next orthonormal vector using wq, w, and projecting the third basis vector:

wy = (0,1,2) = proj,, (0,1,2) — proj,,, (0,1,2)

- Normalise each of the vectors by dividing by their norms.

w1 Wy w3
= ] ] uZ ) u3 =
[lwall

uq =
|lw2||’

[lwsl]|

- Orthonormal basis will be {uy, u;, u3}.

You can keep following this pattern if there are more basis vectors.



e Testing for orthogonal subspaces Back to methods

- Same as testing for orthogonal sets = Inner product of every vector combination between subspaces
should be 0.

Remember all
Subspace 1: §; = Span{(1,0,1), (1,1,0)} / paning sets are
Subspace 2: S, = Span{(—1,1,1)} subspaces

Are they orthogonal?

veES, 2> v=a(101)+5b(1,1,0) Just linear
—

wesS, >w=c(-111) combinations

of basis vectors

Where a, b, ¢ are constants.

So v and w represent all vectors in the 2 subspaces.

Try their dot product:

v-w=[a(1,0,1) + b(1,1,0)] - [c(—1,1,1)]
= ac(1,0,1) - (=1,1,1) + bc(1,1,0) - (=1,1,1)
=0

Therefore the subspaces are orthogonal.



e Finding orthogonal complement

- Create matrix equation so dot product of each vector with x is 0.

Find orthogonal complement of Span{(1,2,1,0),(0,0,0,1)}.

X1 0
(1210)x2:0
0 0 0 1/\x3 0

X4 0

Solution to this gives orthogonal complement

Back to methods

Find orthogonal complement of the subspace spanned by the columns of A.

Solution to this gives orthogonal complement




e Projecting onto a subspace Back to methods

- Find orthonormal basis for the subspace.

Projection is the sum of the coordinates multiplied by the corresponding basis vectors.
: _((3 4 43
(orthonormal basis for a subspace) B = {(E’E’ 0) , (_E'E' 0)}

Projection of w = (5,—-5,2) onto B:

Coordinates are:

3 4

¢, = (5,—5,2) - (§,§,0> -1
¢, = (5,—5,2) (—%,%,o) =7
wlp = (:%)

Projection onto subspace spanned by B is,

1><(3 4 0) 7><(
_ =50) - _

3
Igl 0) - (51 _510)

DTS



e Least squares

Find the line of best fit (regression line) of the points (1,0), (2.1),

Assume linear graph can fit:

y=ax+Db

Substitute points into straight line equation:

O=1la+b
1=2a+b
3=3a+b

Back to methods

Write in matrix equation:

Be careful here...

b and b are totally different

X

A b

- Solve ATAX =A"b
aa=( 2z 1)-(F 9
3 1
=G D)0
atax=atv > (¢ 9)()=() >a=3p=-3

3x 5
’T3 73




e Image/pre-image of a linear transformation Back to methods

T=(U1—172,U1+2U2) 9 1 -1
A:(l 2)
v V2

- Find image of v = (—1,2) by applying transformation:

T(=1,2) = (=1 —2,—1 + 4) = (=3,3)
- Find pre-image of w = (—1,11) by solving linear system:

1 —-1]-1 SURPR
(1 ) | 11) 2> Solve > Pre-image is (3,4)



e Showing whether a function is a linear transformation or not Back to methods

T(u) =Uuq + U,

- Show can split with addition.

T(u+v) =T +T)

Tu+v)= W +v)+ W +vy) =W +uy)+ W +vy) =T) +T(v)

- Show can factor scalar.
T(cu) = cT(u)

T(cu) = cuq +cuy =c(uy +uy) =cT(uw)

So T is a linear transformation.



e Using transformed basis vectors

T(1,0) = (2,3), T(0,1)=(—1,1)

~_

Basis vectors

Transform v = (5,4).

- Write using basis vectors:

(5,4) = 5(1,0) + 4(0,1)

T(5,4) = 5T(1,0) + 4T(0,1) = 5(2,3) + 4(—1,1) = (6,19)

[
»

Back to methods




e Kernel of a linear transformation Back to methods

- Find pre-image of the zero vector.

- Same as null space for matrix transformations.
T(v) = Av
(1 -1 =2
A_(—1 2 3)
Kernel is null space:

1 -1 -\ _(°
( ) X2 | =10] > Solve 2> x = (x3,—x3,%3) = x3(1,—1,1)
-1 2 3/\} 0

So kernel is Span{1, —1,1}



Back to methods

e Range of a linear transformation

- All images of domain vectors.

- Same as column space for matrix transformations.

Find column space:

First 2 columns are linearly independent so we use:
( 1 -1 —2)
-1 2 3

col(A) = Span{(1,-1),(—1,2)}

This is the range




e Testing for isomorphic vector spaces Back to methods

- Show dimension of domain = dimension of codomain

If we transform from one vector space to the other we might have:
Vector space 1: V = R3
Vector space 2: W = P, (polynomials of degree 2 or less)

Are they ismorphic?

- To get dimensions we find a basis. Let’s use the standard bases for these vector spaces:

B, = {(1,0,0),(0,1,0),(0,0,1)}

BZ = {11x!x2}

The number of basis vectors in both vector spaces is 3.
Therefore their dimensions are both 3.

Therefore they are isomorphic (they essentially store information in the same way).




e Standard matrix for a linear transformation Back to methods

- We just put the coefficients of each variable as the columns of the matrix.

T(x,y,2) = (2x — y,3y — 22,x + 2y + 37)

Has standard matrix:



e Composition of linear transformations

- Apply transformations one after the other.

- Same as multiplying matrices for matrix transformations.

Tl(xd’»z) = (X -y +Z)

T,(x,y) = 2x —y,x +y,—x+ 2y,—2x + 3y)

/

Back to methods

R? - R?

R? - R*

/

The codomain dimension of the first transformation must match the domain of the second transformation.

In this case we have:

4—
T(w) = [T, o T1](v)

Apply Ty

first then T,

(1 -1 0
>4 _(0 1 1)
|
1 1
9142: _1 2
-2 3
|
1 1\ -1 0\ _
A==\ 1 (o 1 1)_
-2 3
Note that,

T(w) = [Ty o T1](v)

Is undefined because the dimensions don’t match.

2 -3
1 0
-1 3
-2 5

-1

WN =

R® - R*




Inverse transformations

For matrix transformations just find inverse matrix.
T(x,y) = (x + 2y,3x + 4y)

-6

=
[y

Il
/-
N | W |
N
| -
| —
N—————

Write as transformation:

3x y
71 =(—2 + ,———)
(v) Xty =35

Back to methods




e Matrix of T relative to B and B’ for square matrix transformations Back to methods

- Trying to find A™:
v — T(v)=Av=w
Find transformation between 2 different bases that achieves the same thing but with different coordinates

[vlp —> Tvlg = A[v]g = [w]p,

Start in basis, B,

finish in basis B’

So it is the same transformation but the input and output have just been written in 2 different bases.

- Use formula:

A*=Q AP

Where the transition matrices are,

P:B>S < P is transition matrix from B to the standard basis
Q:B'">S5 = Q is transition matrix from B’ to the standard basis
E.g.

A= (1 1 ) <«——| Relative to

standard basis

How about between these 2 bases?

B = {(1,2), (_1,1)}, B = {(_1'3)' (2'1)}

/ \

3 1

o= ) wmoan=(3 )

AN

Matrix of T relative to B and B’




e Matrix of T relative to B and B’ for general transformations
- Use this method when the matrix is either square or not square.

- Transform basis vectors in B, then write with respect to B’.

Let’s do this technique on the last example to check we get the same thing:

A:(; —11)

B={(12),(-11)}, B ={(-13),(21)}

Transform basis vectors of B:

Write in terms of B':

N 10
G-,

V)@= 20

Similarly we have [(_03)]3, = (—3/7

.

v=(57 Z0)

Remember we can use this method even when the matrix is not square.

Back to methods




¢ Finding a similar matrix Back to methods

- Find the transition matrix between the bases, R.

- Calculate its inverse, R™1.

- Apply the formula:
A'=RAR

The following matrix is a transformation with respect to the basis, B.

-

B = {(112)1 (_1)1)}r
Calculate a similar matrix that represents the same transformation but in the basis, B'.

B'={(-13),(21)}

A
1 -1 [v]s > T[v]g
P:B>S < P= (2 1 )
R Similarity R-1
Q:B">S relationship
3 1 [v]s > T[]
AI
We are looking for A'.
First we get R: B"->B > (P|Q)
(1 -1 | -1 2)~<1 012/3 1 )
2 113 /70 11513 -1
P Q R
R - (2/3 1 ) Rl o (3/7 3/7 )
5/3 -1 5/7 =2/7
- 38/7 —6/7
I 1 —
A'=RAR = (8/21 —3/7)



e Testing if something is an eigenvector Back to methods

- Substitute into the eigenvalue problem and check if the answer is a multiple of the input.

This is the eigenvalue

-
2(o)

Is x = (1,0) is an eigenvector?

Answer is a multiple of input vector

therefore it is an eigenvector




¢ Finding eigenvalues for a matrix

- Solve,

Find the eigenvalues of,

1-2 2 |_a2 eq_

= R EVEEE YRy
5 V33 5 /33

Ph=gte =Ty

2 distinct eigenvalues

|A—AIl=0

=~
I

1 2
3 4

Back to methods




¢ Finding eigenvectors for a matrix Back to methods

- First get eigenvalues.

- Substitute eigenvalues into (A — AI)x = 0 and solve.

=G
/

Matrix is triangular so

eigenvalues are on

leading diagonal

=1
(0" 420)=0 -G o) > x=x0)

Choose any x; we like, for example x; =1 > (é) is an eigenvector.

A =4
(5" 220=(G 0~G 79 2 x=x=(P)

Choose any x, we like, for example x, =3 > (g) is an eigenvector.



e Dimension of eigenspace Back to methods

- We have an eigenspace for each eigenvalue.

- Get the eigenvectors in the usual way then count how many linearly independent ones we have.
1 2 =2
A=(-2 5 =2
-6 6 -3

Has eigenvalues, 4 = =3, 3.

143 2 -3 4 2 -3\ /1 0 —1/3 1/3
(—2 5+43 -2 >=<—2 8 —2>~<0 1 —1/3) > x=x3(1/3>
-6 6 —3+3 -6 6 0 00 0 1

1
> (1) is an eigenvector => dim(E,'Ll) =1
3

Al=3:

1-3 2 -3 -2 2 -3 1 -1 1 1 -1
(—2 5-3 -2 >=<—2 2 —2>~<0 1 0) > x=x2<1)+x3<0)
-6 6 -3-3 -6 6 —6 0O 0 O 0 1

1 -1
> (1) and ( 0 > are linearly independent eigenvectors - dim(E,lz) =2
0 1



e Testing if a matrix is diagonalisable Back to methods

- No. of linearly independent eigenvectors = size of square matrix.

1 2 =2
A=|-2 5 =2
-6 6 -3
Has 3 linearly independent eigenvectors:

M)

And it is a 3 X 3 matrix > A is diagonalisable.

Has only | eigenvector:
1
(o)

And it is a 2 X 2 matrix =2 A is not diagonalisable.



e Finding a matrix which diagonalises a given matrix Back to methods

- Make a matrix with columns which are the eigenvectors.

1 2 -2
A=|-2 5 =2
-6 6 -3

1 /1\ /-1 11 -1 13 -1/3 1/3
Eigenvectors: <1>, <1>,< 0 ) 2> P= (1 1 0 >7 pl= <—1/3 4/3 _1/3>
3 0 1 3 0 1 -1 1 0

Diagonal matrix is:

1/3 -1/3 1/3\/1 2 -3\/1 1 -1 -3 0 0
D:P—lAP:<—1/3 4/3 —1/3)(—2 5 —2)(1 1 0)=(0 3 0)
-1 1 0 /\-6 6 -3/\3 0

The diagonal entries

are just the eigenvalues




e Finding a basis such that a transformation has diagonal matrix Back to methods

- The basis is just the linearly independent eigenvectors that diagonalise the transformation matrix.

T(xy,%,x3) = (X1 — X3 — X3,%1 + 3%, + x3,—3%; + x5 — x3)
1 -1 -1
A= 1 3 1
-3 1 -1

Eigenvalues are A = 2,—-2,3.

Same procedure as previous example to get eigenvectors:



e Orthogonally diagonalise a matrix

- Check if matrix is symmetric.

- Normalise any eigenvectors with corresponding eigenvalue of multiplicity 1.

- Use Gram-Schmidt for multiplicity

Eigenvalues are 1 = —2,3.

[\

Eigenvectors are (_ )

1 )and (:i

)

> 1.

Both multiplicity 1 so already are orthogonal: (1,—2)-(—=2,—-1) =0

Back to methods

Just normalise to get Orthonormal
set
(=1-2),=(-2-1)
\/g ) ﬁ\/g )
_1¢1 =2 1_1(1 =2
> P= s(—z —1)’ P = 5(—2 —1)
_ p-1 20
> D=P AP_(0 3)
2 2 =2
A= 2 -1 4
-2 4 -1
Eigenvalues are 4 = =6, 1, =3 «——
Multiplicity 2
- Gram-Schmidt

Gram-Schmidt: wy = (2,1,0)

&

[05S)

D

=

<

D

o

=+

o

=

I

|
NNH
~——
~
— 2
~——
|
b—\ON

w3 = (—2,0,1) — projy,(—2,0,1) = (—2,0,1) —

w2 w3

u, = U, =
27wl 3T iwsll

1
> u; = 3 (1,-2,2)

Orthonormal set is {uq, uy, uz}

(=2,0,1)-(2,1,0)

I2,1,0)|*

o

Make matrix
columns from

these vectors




e (Calculate Jordan normal form of a matrix

- Find eigenvalues.

- Get linearly independent eigenvectors.

- Use generalised eigenvectors if necessary to make T = J = T 1AT.

11
46
—38
-19

4 -4

| 7 -16
A= -6 16
-3 9

Eigenvalues are 1 =3 —— Multiplicity 4

Rank 1 eigenvectors: (A — 3I) -> eigenvectors are of the form

-11
—48
43
23

Rank 2 eigenvectors: (A4 — 3I)? - eigenvectors are of the form

Rank 3 eigenvectors: (4 — 3I)3 = eigenvectors are of the form

Rank 4 eigenvectors: (4 — 3I)* = eigenvectors are of the form

™~

SO OO
S O OO
o O OO
S O OO

—
OO K

(=N e ]

N~——

o oo

Back to methods

Choose this as initial eigenvector

(can choose any as long as it is
linearly independent from the

other rank eigenvectors)

OO O R

=2

-6
4
2

6
24
—20
-12

1
7
-6
-3

X4 =
T

1
x3—(A—31)X4— -6

-3

6
2 24 3

x2=(A—31) X4 = —20 x1=(A—3I) X4 =

—12

-2

2



o 0 1/4 -1/2

SR T

3100
Ce1ar_ |0 3 1 0
]_TAT_0031

0 0 0 3

0 -3/4 —3/4 —1/4
T—lz/



e EKasily compute high powers of a matrix Back to methods

Diagonalise the matrix.

Raise the diagonals to the desired power then use similarity.
_ (10 18 . 6
A—(_6 _11),f1ndA

Eigenvectors are (_23) and (_12)

2 P:(_z3 _12)7P_1:(—12 —23)

Diagonalise: B = P~14AP = (_12 _23) (i% _1181) (—23 —12) _ (—02 (1))

— 6 _7)\6
__.‘:36:(02 2) :(( 5) 106):(604 (1))

cowmpet (G (G, 3G )



4. Glossary

Back to contents

This section contains key terms and definitions in plain English. Note that plain English descriptions

are good for understanding but can sometimes lead to mistakes if used with no regard for the

rigourous mathematical definitions.

Adjugate Transpose of the cofactor matrix.
Used for calculating inverse matrices.
Angle A measure of the difference in direction of vectors.

Given by the cosine formula.

Augmented matrix

Extending the linear system matrix with either a column
vector or another matrix.

Basic variable

Variable corresponding with the pivot positions in the echelon
form.

We write these variables in terms of the free variables.

They are like dependent variables.

Basis

A linearly independent spanning set.

Block matrix

A matrix made up of other smaller matrices.

Cauchy-Schwarz Inequality

Says that the absolute value of the inner product of 2 vectors
is less than or equal to the norms of the 2 vectors multiplied
together.

Characteristic equation

The equation defined by a determinant that gives us the

eigenvalues of a matrix.

Characteristic polynomial

The polynomial that comes from expanding the characteristic
equation.

Closed under addition

Taking 2 vectors from a set and adding them produces another
vector in that set.

Closed under scalar multiplication

Taking a vector in a set and multiplying it by a scalar
produces another vector in the set.

Codomain

The set of possible outcome values of a function.

Coefficient

The number multiplying a variable.

Column space

The set of all possible solutions to a matrix equation.
It is the span of the column vectors of the matrix.




Column vector

A vertical vector.
(1 X n) matrix.

Composite transformation

Combining 2 separate transformations into a single step.

Coordinates

The number multiplying the basis vectors.
This describes the location of a point.

Diagonal matrix

Zeroes everywhere except the leading diagonal.

Diagonalisation The process of finding a similar matrix that is diagonal to a
given matrix.

Dimension Number of basis vectors of a vector space.

Distance This is the norm of the difference between 2 vectors.
Can be defined with a general inner product or standard dot
product.

Domain Set of input values.

Dot product

Multiplication of 2 vectors that produces a vector output as
defined in elementary mathematics courses.

Echelon form

Special form of a matrix that can be used to solve a linear
system using back-substitution.

Eigenspace The set of all possible eigenvectors for a given eigenvalue.
Eigenvalue A number corresponding with the eigenvalue problem.
It is associated with an eigenspace.
The effect is to stretch or compress the corresponding
eigenvectors.
Eigenvector A vector corresponding with the eigenvalue problem.

Its direction is unchanged by the matrix of transformation.
It is stretched by a factor equal to the eigenvalue.

Elementary matrix

A matrix which is one row operation away from the identity
matrix.

Euclidean inner product

The standard for product.

Free variable

A variable corresponding with a non-pivot position of an
echelon form.
It is like an independent variable (we can choose it).

Gaussian elimination

The process of obtaining an echelon form of a matrix.

Gauss-Jordan elimination

The process of obtaining the reduced echelon form of a matrix.



Generalised eigenvector

A vector which solves the eigenvalue equation raised to a
power.

Gram-Schmidt process

The process of obtaining an orthonormal basis from a general
basis.

Homogeneous system

A system with no constant terms.
Ax=0
Every term has an x in it.

Identity matrix

Zeroes everywhere except the leading diagonal which has
entries equal to 1.

Image

The output of transforming a vector.

Inconsistent

A system which has no solution.

Infinite solutions

An infinite number of solutions to a system.
There will always be a free variable.

Inner product

An operation on 2 vectors which obeys 5 rules (sometimes 4"
and 5™ rule are combined together).

Inner product space

A vector space which we also define an inner product on.

Inverse matrix

The matrix which when multiplied by the original matrix
produces the identity matrix.

Inverse transformation

Going back from output to input.

For matrix transformations it is just the inverse matrix.

Invertible matrix

A matrix which has an inverse.
The determinant is not zero.
A system with an invertible matrix has a unique solution.

Isomorphism

Vector spaces which essentially store the same information but
in a different format.
Technically it is when their dimensions match.

Jordan normal form

A unique form of any matrix.
It is a block matrix corresponding with the eigenvalues.

Kernel

The set of all vectors that get transformed into the zero vector.

Leading diagonal

The longest diagonal of a square matrix.
From top left to bottom right.

Leading entry

The first non-zero entry of a row.

Least squares

A method for finding lines of best fit.



It approximates a solution to an inconsistent system.

Left-multiplication

Multiplying a matrix on the left hand side.

Linear combination

Adding vectors together which are multiplied by various

constants.

Linear equation

Where the variable is not raised to any power or used in
transcendental functions (sine, cosine, exp etc.)

Linear operator

A linear transformation (often with function inputs).

Linear system

A collection of linear equations that share variables.

Linear transformation

A function that obeys 2 specific rules to do with addition and
scalar multiplication.

Linearly dependent

Vectors which can be written as linear combinations of each
other.

Linearly independent

Vectors which cannot be written as linear combinations of each

other.

Lower triangular matrix

All entries above the leading diagonal are 0.

LU-factorisation

A type of matrix factorisation where the left factor is a lower
triangular matrix and the right factor is an upper triangular
matrix.

Matrix equation

Ax=0Db
Represents a linear system of equations or a linear

transformation.

Matrix of T relative to B and B’

The matrix of a linear transformation that starts in the basis,
B, and gives the output in the basis, B'.

Multiplicity

The number of times an eigenvalue appears as a root to the
characteristic polynomial.

Non-homogeneous system

There is a constant term in the matrix equation.
Ax = b, b+0

Nonlinear equation

The variable is raised to a power or used in a transcendental
function.
Or if multiplied by another variable.

Nonlinear system

A collection of nonlinear equations that share variables.

Non-standard basis

A basis that is not the usual orthonormal basis for the given
vector space.



Norm Gives an idea of size of a vector.
Defined with either the dot product or a general inner product.

Normalise Create a vector with norm equal to 1 from a general length
vector. We do this by dividing the given vector by its own
norm.

Null space The set of all solutions to the homogeneous equation.

Nullity Dimension of the null space.

One-to-one

Every input of a linear transformation has exactly 1 output.

Onto

Every possible output is achieved (codomain = range).

Operator

Performs some task based on some inputs.
Inputs can be numbers, variables, functions etc.

Orthogonal complement

The subspace which has all the vectors that are orthogonal to
a given subspace.

Orthogonal diagonalisation

Diagonalising a matrix using an orthogonal matrix.

Orthogonal matrix

A matrix with orthonormal columns and rows.

Orthogonal projection onto

subspace

The coordinates of a vector relative to the basis of the

subspace.

Orthogonal projection onto vector

The shadow of a vector onto another vector.

Orthogonal sets

Every combination of vectors is orthogonal.

Orthogonal subspaces

Subspaces which form an orthogonal complement.

Orthogonal vectors

Inner product is 0.

Orthonormal

Both orthogonal and of unit length.

Orthonormal basis

A basis whose vectors are an orthonormal set.

Orthonormal set

All vectors are orthogonal to each other and also of unit
length.

Particular solution

The solution to the non-homogeneous part of the matrix
equation.

Pivot

The leading entry of a row.

Pivot column

The column which contains a pivot.



Pre-image The input which resulted in the specified output.
Range The set of outputs for the specific inputs.
Rank How many linearly independent rows/columns a matrix has.

Reduced echelon form (REF)

Special form of a matrix that can be used to read off solutions
to linear systems.

Every matrix has a unique REF, but many matrices might
have the same REF.

Regression line

Straight line of best fit.

Row operation

Multiplying a row by a constant.

Swapping rows.

Adding multiples of one row to another.

They can also be represented by elementary matrices.

Row space

The set of all linear combinations of the rows of a matrix.

Row vector

A horizontal vector.

Similar matrices

Matrices which represent the same linear transformation but in
different bases.

Solution space

The set of all possible solutions to either the homogeneous or

non-homogeneous matrix equation.

Span/Spanning set

The set of all possible linear combinations of a set of vectors.

Standard basis

An orthonormal basis for a vector space which has 1’s in the
corresponding positions for each vector in the basis.

Standard matrix

Matrix of transformation in the standard basis.

Subspace

A subset of a vector space that is closed under addition and
scalar multiplication.

Symmetric matrix

A matrix which is equal to its transpose.

Transition matrix

A matrix which you can multiply a vector by to get the same

vector in an alternative basis.

Transpose

Changing the columns of a matrix to be the rows and the rows
to be the columns.

Triangle inequality

A generalisation of Pythgoras’ theorem.

Triangular matrix

Either an upper or lower triangular matrix.



Union

A set containing the elements of the 2 sets being unioned.

Unique solution

Only one set of values satisfies the matrix equation.
Corresponds with a zero determinant.

Unit vector

A vector with norm equal to 1.

Upper triangular matrix

A matrix with zeroes below the leading diagonal.

Vector

A mathematical object that has both size and direction.

Vector space

A set of objects that obeys 10 specific rules.

Zero matrix

Every entry of the matrix is 0.

Zero vector

Every entry of the vector is 0.



